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Abstract 
Cereals are the most widely grown crops in Europe, accounting for 53.8% of total crop area. Today’s farmers are 
facing serious challenges – climate change, resource scarcity and population growth, which can have a negative 
impact on the quantity and cost of agricultural production. It is therefore important to focus on the development 
of cereal breeding programmes and the introduction of new technologies, including High-Throughput phenotyping 
methods. The aim of this paper was to analyse the recent scientific literature on the current use of ground-based sensors 
applied in High-Throughput Phenotyping Platforms (HTPPs) for the assessment and analysis of morphological and 
physiological traits in cereals and for the selection of high-yielding genotypes. This enables the breeder to asses and 
identify genotypes of interest more quickly and accurately at different stages of plant development and in larger field 
and laboratory trials than with traditional breeding methods. The paper also provides information on the potential of 
using ground-based HTPPs, the most important methodological principles in setting up trials and measuring traits to 
ensure the accuracy of the assessments and the processing and interpretation of the results.
Key words: sensors, morphological traits, physiological traits, yield, correlation.

Introduction
Cereals are among the most widely grown crops 

in Europe. Compared to other crops, cereals account 
for 53.8% of the EU’s cereal area in 2020 (Eurostat, 
2020), with wheat (Triticum aestivum L.) accounting 
for almost 45%, and barley (Hordeum vulgare L.) 20% 
of European cereal production (Eurostat, 2020). Wheat 
(498 800 ha) was also the largest cereal area in Latvia 
in 2020, followed by oats (Avena sativa L.) (98 900 ha) 
and barley (75 300 ha) (CSB database, 2021). 

Agriculture faces several challenges at the same 
time: climate change, resource scarcity and rising 
costs, and population growth. Although it has been 
predicted in the past that global wheat production 
will increasingly expand to northern regions (Ortiz 
et al., 2008), climate change has tended to reduce 
cereal productivity and quality in recent years. In 
recent years, droughts and record-high temperatures 
have been observed across Europe (NOAA National 
Centers for Environmental Information, 2020), 
significantly reducing cereal yields, including the 
Baltic States (Eurostat, 2020).

Cereal variety breeding, which results in the 
development of new and high-yielding varieties, 
is one of the most important resources to meet the 
demand for cereal inputs to increase food production. 
Studies confirm the importance of breeding for 
yield gains, changes in productivity – related 
traits and disease resistance (Laidig et al., 2021). 
Therefore, in the context of climate change, as well 
as the political and social imperative to produce more 
environmentally friendly food commodities, the 
progress of cereal breeding is also receiving constant 
attention (Laidig et al., 2021). The greatest challenge 
in crop breeding research in the 21st century is the 

ability to predict yields that are as close as possible to 
the genetic potential of a variety. Although genotyping 
efficiency has improved considerably thanks to new 
advances in DNA sequencing, methods for assessing 
plant traits (phenotype) have evolved relatively 
slowly over the last 30 years, and factors affecting 
phenotyping efficiency limit the breeder’s ability to 
assess the genetics of quantitative traits, particularly 
those related to yield and stress tolerance (White et 
al., 2012). Therefore, the introduction and use of 
innovative phenotype – based selection techniques for 
breeding of new varieties is a current research area 
to improve yield and tolerance to abiotic and biotic 
factors under changing climatic conditions (Rubiales 
et al., 2021). 

In breeding programmes using traditional 
phenotyping methods, breeders rely mainly on the 
evaluation of the traits of interest using visual and 
manual phenotyping methods. This is time-consuming, 
labour-intensive and it requires large human resources 
to select genotypes of interest from large hybrid 
populations and breeding nurseries. In contrast, high-
resolution phenotyping methods can greatly increase 
the ability to make observations and quantify traits in 
field trials and breeding nurseries on a much larger 
scale (Reynolds, Chapman, & Crespo-Herrera, 2020; 
Yang et al., 2020). Nowadays, plant phenotyping is 
seen as a new research direction that provides important 
information on genotype – environment interactions, 
focused on selecting productive plants suitable for 
given growing conditions. Moreover, these studies 
mostly use non-invasive and digital technologies 
(Costa et al., 2019). The use of High-Throughput 
plant phenotyping platforms (HTPPs) in cereal 
breeding programmes makes it possible to identify 
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superior genotypes and thus achieve better results in 
the breeding process (Würschum, 2019). Due to the 
advantage of such phenotyping technologies, it is 
possible to replace subjective trait evaluations quickly 
and efficiently, and their application in plant breeding 
to select the best genotypes is seen as an important 
prerequisite for continuous grain yield progress in the 
future (Deery & Jones, 2021).

HTPP’s are facilities on which various sensors 
and data collection systems are deployed to allow the 
breeder to assess phenotypes for various traits in large-
scale trials (Li et al., 2021). The range of available 
phenotyping platforms is very wide and can be 
applied in field, greenhouse or laboratory trials using 
stationary, vehicle-based, self-propelled, portable or 
aerial platforms. This review focuses on a summary of 
research on the use of ground-based high-resolution 
methods for the evaluation of morphological and 
physiological traits and grain yield, as it is important 
in breeding to obtain phenotypic data for different 
genotypes that are as close as possible to real field 
conditions.

The aim of this paper was to analyse the recent 
scientific literature on the current use of ground-based 
sensors applied in High-Throughput Phenotyping 
Platforms (HTPPs) for the assessment and analysis of 
morphological and physiological traits in cereals and 
for the selection of high-yielding genotypes.

Materials and Methods
The present study was carried out using the 

monographic method to review different precise 
phenotyping methods provided for identifying 
morphological and physiological traits. The scientific 
literature from different journals and monographs 
has been used from research in Australia, Sweden, 
Germany, Poland, USA, Spain, Canada, China, Korea 
and India.

Results and Discussion 
Characterization of ground-based HTPP 

High-Throughput phenotyping involves specific 
tools that enable complex assessment of plant 
morphological and physiological traits at the organ, 
plant, canopy and even population levels (Li, Quan, & 
Song, 2021). To assess these different traits, different 
ground-based HTPPs have been developed, equipped 
with one or most commonly several combined 
spectral sensors. The most widely used of which are 
visible spectrum or RGB (red, green, blue) cameras 
(Deery et al., 2021), light detection and ranging or 
LIDAR (Deery et al., 2021; Lin, 2015), multispectral 
or hyperspectral cameras and thermal cameras (Bai et 
al., 2016; Kim et al., 2021). 

Depending on the light source used, sensors are 
divided into two groups – active and passive sensors. 

Active sensors can be used in different lighting 
conditions and this does not affect the accuracy of 
the data obtained, as they use different independent 
light sources such as LED lamps as the illumination 
source (Kim et al., 2016). One of the active sensors 
frequently used in studies is the GreenSeeker® 
sensor (Trimble, Sunnyvale, California, USA) which 
can measure the Normalized Difference Vegetation 
Index (NDVI) (Deery et al., 2021). Passive sensors 
(RGB cameras), on the other hand, are dependent on 
sunlight, which affects their usability (Barmeier & 
Schmidhalter, 2017).  

One of the most widely used phenotyping tools in 
the breeding programmes of cereal varieties are RGB 
image-based phenotyping platforms (Zhang & Zhang, 
2018), which are typically used as a base sensor in 
combination with other types of additional sensors 
(Kim et al., 2021). The main advantages of using RGB 
cameras compared to spectral sensors are their relative 
ease of use, low acquisition and maintenance costs 
(Kim et al., 2021; Prey, von Bloh, & Schmidhalter, 
2018). Multispectral and hyperspectral cameras, on 
the other hand, can provide higher image resolution, 
but their costs are considerably higher than for RGB 
cameras (Morgounov et al., 2014). Hyperspectral 
cameras can detect various stress symptoms in plants, 
including early drought stress symptoms that cannot 
be assessed visually (Kim et al., 2021).

The literature indicates that each type of sensor has 
its optimal application time depending on the stage of 
plant development, as the accuracy of the measurement 
results can be affected by light reflection from the 
soil. For cereals, RGB is recommended for traits’ 
assessment at early stages of plant development, while 
spectral measurements are recommended for cameras 
at later stages (Prey, von Bloh & Schmidhalter, 2018). 
Sensor performance can also be affected by various 
environmental changes such as sunlight, temperature, 
humidity and wind. To ensure the accuracy of the data 
obtained, it is recommended that measurements with 
RGB cameras are taken at a certain height above the 
canopy vegetation between 10 am and 2 pm, as the low 
sunlight angle in the afternoon causes shadows to form 
on the canopy (Bai et al., 2016; Fernandez‑Gallego 
et al., 2018). For better interpretation of the data 
when measurements are made under changing 
environmental conditions, it is recommended to also 
collect data on solar radiation, air temperature and 
relative humidity (Bai et al., 2016). 

The use of HTPPs requires the development 
of state-of-the-art information technologies, as 
phenotyping of plants with different sensors generates 
large amounts of data, and the processing of the 
resulting data is complex (Rosenqvist et al., 2019), 
requires higher-capacity computers for image pre-
processing and interpretation of the results (Bai et al., 
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2016). Precise data structure, definition of algorithms 
and experiments, and data sharing are crucial as well 
(Rosenqvist et al., 2019).
Morphological traits assessment

Studies on plant greenness traits are of current 
interest as aboveground biomass, surface transpiration, 
photosynthetic potential and light interception are 
closely related to all green parts of plant organs such 
as leaves, ears and stems (Pask et al., 2012). Early 
vigour (EV) is a physiological trait that is the ability 
of plants to rapidly build leaf area and aboveground 
biomass during the early stages of development, 
thereby reducing water evaporation from the soil 
(Mullan & Reynolds, 2010) and increasing water 
use efficiency and competitiveness with weeds (Pask 
et al., 2012). EV can be used in cereal breeding 
programmes as a selection criterion to estimate plant 
biomass and predict plant productivity (Kipp et al., 
2013). In traditional methods, EV is assessed visually 
(in scores), which is strongly influenced by subjective 
evaluation. If a larger number of genotypes needs to 
be assessed quickly and accurately, RGB cameras can 
be used from HTPPs, and these images are analysed in 
dedicated computer programs (Khadka et al., 2020). 
Spectral camera measurements are recommended 
especially in large field trials; the calculated Spectral 
Plant Vigour Index (EPVI) showed a consistent 
positive correlation with EV at the plant emergence 
stage over the years (Kipp et al., 2013).

Canopy ground cover (CGC) is the proportion 
of soil covered by the plant canopy, a trait influenced 
by both the morphology of the plant canopy and the 
rapid growth capacity of the plant up to and during 
the tillering stage. In cereal crops, CGC reduces 
soil water evaporation, soil erosion and nitrogen 
leaching into groundwater (Prabhakaraa, Hively 
and McCartyc, 2015) and in wheat also increases 
competitiveness with weeds (Feledyn-Szewczyk, 
Jończyk, & Berbeć, 2013). Trait CGC in cereals at 
both early and late stages of plant development is 
assessed using visual and HTPP assessment methods 
(Deery et al., 2014; Jimenez-Berni et al., 2018) with 
a strong correlation between the two methods found 
in spring wheat (Walter et al., 2019). In a study by 
Deery et al. (2014), CGC and canopy colour with an 
RGB camera were evaluated, calculating a greenness 
index. Another study used a spectral camera to assess 
this trait in wheat, finding a close correlation (r=0.93) 
between NDVI and CGC (Prabhakaraa, Hively, & 
McCartyc, 2015). A study by Deery et al. (2021) 
measured NDVI with GreenSeeker® during the 
emergence and tillering phases of plants, showing 
the least variation between measurements, unaffected 
by differences in light conditions and the presence of 
dew. When measuring CGC, it should be taken into 
account that the result may be influenced by intensity 

of light reflection from canopy, which depends on the 
structural and optical characteristics of the plants, as 
well as on the structural parameters of canopy such 
as row spacing, plant density and seeding direction 
(Kuester & Spengler, 2018).  

Aboveground biomass (AGB) is a trait that 
represents vegetative plant mass per unit area and can 
be used to predict grain yield in cereals, including 
under drought stress (Morgounov et al., 2014). 
The detection of this trait by traditional methods is 
destructive, time and resource consuming, limiting the 
evaluation of large number of genotypes. Literature 
suggests that in barley the NDVI correlates well with 
AGB during intensive plant growth (Calera, Gonzalez-
Piqueras, & Melia, 2004). According to the available 
information in the literature, significant differences in 
the change of NDVI index from the tillering to the 
flowering phase in wheat were found for high and low 
yielding genotypes (Morgounov et al., 2014). Bai et 
al. (2016) used RGB images to detect AGB at early 
plant stage (before plant tillering) by determining the 
proportion of green pixel fraction (GPF).

Plant height (PH) is closely related to AGB, which 
can be influenced by air temperature and soil moisture 
regime, especially until flowering. Kronenberg et al. 
(2020) points out that at the tillering stage, under 
conditions of elevated temperature and moisture 
stress, the process of stem elongation may differ 
between different wheat genotypes with consequent 
effects on both AGB and plant productivity. In 
different studies the height of the cereal canopy was 
assessed using a soil laser scanner (Kronenberg et 
al., 2020), an ultrasonic sensor (Bai et al., 2016), and 
LIDAR (Jimenez-Berni et al., 2018).

The leaf area index (LAI) is a trait that shows the 
ratio of green leaf area per unit of land surface, and it 
strongly correlates with cereal AGB and grain yield 
(Hasan, Sawut, & Chen, 2019). The LAI can estimate 
how much of a plant’s leaf surface area captures solar 
radiation (González-Sanpedro et al., 2008). More 
accurate LAI measurements can be obtained with 
optical hand-held instruments, but it is labour and 
time consuming (González-Sanpedro et al., 2008; 
Nie et al., 2016). Ground-based HTPPs such as RGB 
cameras (Kim et al., 2021) and LIDAR or spectral 
sensors for NDVI detection can be used (Deery et al., 
2014).
Physiological traits assesment

Physiological-functional traits include various 
measures of plant functions, such as photosynthesis, 
respiration, stress tolerance and plant water relations 
(respiratory function and transpiration) (Zhang & 
Zhang, 2018), canopy temperature (Li et al., 2019) 
and leaf senescence (Fernandez-Gallego et al., 2019).

Chlorophyll fluorescence is a characteristic of 
photosynthetic rate (PR) and indicates the response 
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of plants under drought stress, usually detected by 
using fluorescence sensors. This method can measure 
photosynthetic rate, conductance and gas exchange 
in leaves of plants under drought stress (Kim et al., 
2021). High-Throughput phenotyping techniques use 
change-coupled cameras (CCD) to assess changes in 
various physiological parameters. It has been noted 
in literature that using fluorescence analysis makes 
these studies cumbersome to conduct in the field, 
as preparatory steps such as adjusting darkness and 
ensuring constant lighting conditions are required 
(Tietz et al., 2017). In the field, HTPPs can determine 
the photosynthetic area of the canopy by calculating 
vegetative indices such as relative green area (GA) 
and relative greener green area (GGA) (Fernandez-
Gallego et al., 2019).  

Canopy temperature (CT) for cereal describes 
the water status of the plant and is also used in breeding 
programmes to assess the response of genotypes under 
drought stress (Mason & Singh, 2014). CT is influenced 
by the genotype of the variety, which is determined by 
factors such as shoot morphology, root depth and root 
biomass, and external environmental factors such as 
solar radiation, soil moisture, wind speed, temperature 
and relative humidity (Li et al., 2019; Reynolds, Pask, 
& Mullan, 2012). CT is traditionally determined with 
an infrared thermometer. However, the result of this 
method in large-scale field trials can be affected by 
weather fluctuations, and the method is labour and 
time consuming (Deery et al., 2016). With HTPPs 
measurements of CT for cereal crops is recommended 
to be measured with a thermal camera (between 12 am 
until 2 pm), a thermal infrared radiometer (Bai et al., 
2016) or by calculating the NDVI of the canopy at the 
beginning of the grain filling period (Li et al., 2019). 

Leaf senescence (LS) is a trait characterised by the 
yellowing of the green leaves of plants. In cereals, it 
can be used to assess the effect of biotic (diseases) and 
abiotic stress (temperature, moisture, nutrient supply) 
on plants (Distelfeld, Avni, & Fischer, 2014). When LS 
occurs prematurely in plants, it causes yield and grain 
quality losses (Gregersen et al., 2013). Therefore, in 
cereal breeding programmes, the trait ‘stay-green’ (de 
Souza Luche et al., 2015; Lopes & Reynolds, 2012) 
is used to compare varieties for LS, which is usually 
assessed visually in scores. In HTPPs measurements 
of LS for cereals are assessed using spectral sensors 
by calculating NDVI, which simultaneously provides 
information in the degree of greenness level of the 
canopy (Fernandez-Gallego et al., 2018) and RGB 
cameras by calculating vegetative indices – plant 
senescence reflectance index (Fernandez-Gallego et 
al., 2019). 

Nitrogen use efficiency (NUE) is a trait that 
is receiving increasing attention in the breeding 
programmes of cereal varieties (Nehe et al., 2020; 

Nguyen et al., 2019). A positive aspect of nitrogen 
use efficient varieties is their ability to maintain grain 
yield and quality even at reduced nitrogen fertilizer 
rates. Accurate assessment of this trait is resource-
intensive, so the use of HTPPs is an important 
alternative for comparing NUE between varieties. 
In N-use related studies, HTPPs digital imaging 
aims at automated measurements of plant growth, 
organ development, physiological parameters and 
biochemical components (Nguyen & Kant, 2018). The 
application of HTPP methods for the identification of 
NUE is still under investigation, at first adopting them 
under controlled cultivation conditions. Banerjee et al. 
(2020) used RGB and hyperspectral imaging methods 
to identify NUE, 47 vegetative indices described in 
the literature were tested of which the Transformed 
Chlorophyll Absorption Reflectance Index (TCARI), 
the Vogelmann Red Edge Indices (VOG), Miller Index 
(ZMI) showed the highest correlation with chlorophyll 
levels. In this study, an improved vegetative index, 
the normalized difference chlorophyll index in wheat 
(NDCIW) was developed, which together with digital 
plant biomass measurements are recommended for 
use as biomarkers for the selection of N-responsive 
wheat genotypes during the vegetative stages of plant 
development.
Grain yield and its components

As grain yield is a complex trait, the use of 
ground-based HTPP for estimating yield components 
is also recommended in grain breeding studies 
(Fernandez-Gallego et al., 2018; Hasan et al., 2018). 
Spike number (SN) or spike density per unit area 
is a trait that is formed by the interaction between 
yield components such as the number of plants and 
their productive tillering. The rapid assessment of 
this trait in large-scale studies helps the breeder to 
predict grain yield early, and it is recommended as a 
selection criterion in breeding programmes to select 
high-yielding genotypes (Fernandez-Gallego et al., 
2018). Fernandez-Gallego et al. (2018) used an RGB 
camera to count spikes in durum wheat (Triticum 
turgidum L. subsp. durum), taking one image for each 
plot at a height of 1 m above the canopy. Automatic 
image processing was then carried out with algorithms 
developed for different wheat varieties and plant 
development stages. In this study, the SN per unit area 
assessed at flowering correlated better with grain yield 
than when this trait was assessed at later stages of plant 
development. The result may be influenced by the 
senescence of canopy, which complicates the image 
processing. Also, Hasan et al. (2018) recommends 
using an RGB camera, but only in an oblique position 
relative to the field surface. It was concluded that in 
this way, images could be better analysed for various 
characteristics of spikes such as texture, colour and 
shape, productivity and disease resistance. 
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Grain yield (GY) is a performance trait that is 
commonly the focus in the cereal breeding programmes 
(Bai et al., 2016). Grain yield prediction is a complex 
task, so it is essential for the breeder to find an 
efficient method for its accurate and early estimation. 
Studies using HTPPs with different sensors measure 
grain yield in cereal crops and analyse whether there 
are positive correlations between vegetative indices 
and grain yield, with the aim of finding out which of 
them could be used for GY prediction. For grain yield 
estimation Normalised Difference Vegetative Index 
(NDVI) (Bai et al., 2016; Christopher et al., 2014; 
Morgounov et al., 2014; Naser et al., 2020; Sultana 
et al., 2014), Green Area (GA), Greener Green Area 
(GGA), Normalized Green-Red Difference Index 
(NGRDI), and Triangular Greenness Index (TGI) 
(Fernandez-Gallego et al., 2019) are more widely 
recommended vegetative indices.

Conclusions
Sensors used in ground-based High-Throughput 

phenotyping platforms (HTPPs), including visible 
spectral (RGB) and hyperspectral cameras, can be used 
to assess and analyse morphological and physiological 
traits and select high-yielding genotypes in cereal 

breeding programmes. HTPPs methods enable the 
breeder to evaluate and identify genotypes of interest 
more quickly and accurately at different stages of plant 
development, including early stages, and in larger field 
and laboratory trials than traditional breeding methods. 
When working with HTPPs methods, depending 
on the type of sensor used, it is important to follow 
certain methodological principles for setting up the 
experiments, taking the measurements, processing the 
data and interpreting the results. The HTPPs studies 
carried out so far have mainly focused on wheat, so 
it is relevant to test the application of these methods 
also to other cereal species. In cereal breeding 
programmes, especially under field conditions, further 
research is needed to identify accurate biomarkers for 
the identification of nitrogen-use efficient and high-
yielding genotypes by HTPPs methods. 
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