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Abstract
Wet areas in agricultural lands are usually not fully or properly managed due to problematic accessibility by heavy 
machinery and are associated with lower crop yields. There are neither studies regarding spatial distribution of wet 
agricultural areas in Latvia nor large scale soil maps. Being aware of these wet areas, it would be possible to plan 
actions for effective management of these areas, starting with a scale of landscape. A geographic information system 
model could serve as an assistant for decision-making, such as, a direct support for the management of amelioration 
systems, change of land use and management patterns or granting support payments.
Remote sensing data like Sentinel-2 satellite images and LiDAR (Light detecting and ranging) technology can be 
used to identify local wet areas. The focus of this article is to evaluate different remote sensing indices and methods 
that can be used to identify wet areas in agricultural lands using open access data and software. From 52 indices, 
which were analysed with soil moisture field measurements in 33 sample plots, only two of them showed statistical 
significance in linear regression model (p<0.05): normalized height model in resolution of 25 meters (r2=0.45) and 
visible blue spectral band in April (r2=0.39). Results from this study help to focus on different aspects of remote 
sensing data usage and methodology for future improvements in order to fully implement LiDAR and Sentinel-2 data 
for identification of wet areas in agricultural lands.
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Introduction
Last 50 years have marked significant increase 

in food growing and production, also in human 
population, which is predicted to be about 9 billion 
people in the middle of this century, but the limit is 
reached where, on global scale, agricultural lands could 
be expanded at the same rate as demand for the food. 
This situation leads to a question: how to sustainably 
produce the amount of food needed (Godfray et al., 
2010; Tilman et al., 2002)? H. Godfray and M. Tester 
highlights in their studies that the best way to address 
future challenges in agriculture globally is a proper 
way of land use and management locally, while the 
knowledge of both farmers and policy makers is one 
of the key factors (Godfray et al., 2010; Tester & 
Langridge, 2010). 

Soil is one of the most important resources 
in agriculture – it provides plants with water and 
nutrients, serves as a habitat for organisms and a place 
for water storage, supply and purification (Mitchell 
& Soga, 2005). Wet and poorly drained soils are 
important for biodiversity (Plantureux, Peeters, & 
McCracken, 2005), but also are one of the limiting 
factors to efficiently manage agricultural lands, forests 
and similar fields (Pearsall, 1950). Information about 
these areas and their spatial distribution helps to 
improve the quality of land management and to avoid 
operational problems, negative environmental impact 
and additional financial costs (Christensen et al., 
1996). Soil science has been widely studied in Latvia, 
soil classification system has been developed, many 
books published and agricultural lands mapped in the 
Soviet times, but there is neither actual information and 
comprehensive materials on the spatial distribution 

of soil moisture in Latvia nor large-scale soil maps 
(Kasparinskis & Kārkliņš, 2018).

As technologies develop, more and more new data 
sources are used in soil studies. Various remote sensing 
tools, such as terrain models from laser scanning data, 
multi-spectrum satellite images, specific modelling 
tools and hydrological models are used for soil spatial 
modelling and condition determination worldwide 
(Minasny & McBratney, 2016). The hydrological 
conditions may be influenced by many factors and their 
interaction, but one of the most important factor is the 
surface topography – both groundwater and surface 
water flows almost always coincide with the direction 
and steepness of the slope, following potential energy 
of gravity of the Earth (Burt & Butcher, 1986; Zinko 
et al., 2005).

The LiDAR (Light Detecting and Ranging), 
technology rapidly evolving nowadays, provides 
more and more possibilities for analysing an area 
or a study object. LiDAR is similar to a radar, only 
pulsing light signals are emitted and detected instead 
of radio waves (Schwarz, 2010). Laser scanning can 
be performed from different type of machinery, both 
from airborne (aircrafts, drones, etc.) and terrestrial 
(cars, rovers, stands, etc.), but almost all of the LiDAR 
system consists of four main components: a laser, 
scanner and optics, photodetector, and navigation 
and positioning system. The operating principle is  
simple – a laser beam is transmitted to a reflecting 
surface and the receiving equipment measures the 
time it returns to the source, in combination with the 
GPS receiver and the IMU sensor, it is possible to 
determine the exact relative distance (reflection point) 
for each light beam (Bellian et al., 2004). LiDAR 
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technology can provide several thousand individual 
measurements every second, but the number of 
measurements and their accuracy vary depending 
on performance and technical parameters of each 
component. The more accurate and denser the point 
cloud, the higher quality of the output data and the post-
processing capabilities, but for the user it also means 
higher costs for the equipment, so it is important to 
choose the appropriate technical specifications for the 
intended purpose (Dassot et al., 2011). The accuracy 
of high-resolution data in the lower layers can also 
be significantly affected by vegetation density and 
swelling, which can hold most laser beams to from 
reaching ground surface (Moskal et al., 2009). 

Similar to LiDAR, another evolving and modern 
remote sensing data type is multispectral imagery 
from Sentinel-2 satellites. The main advantage of the 
use of satellites is temporal resolution, as scenes are 
available relatively often and long-term monitoring 
of the site is possible (Alparone et al., 2004). Optical 
satellite sensors capture the electromagnetic beams 
of the Sun reflected from the Earth’s surface within 
the range of visible light and infrared light, mostly 
panchromatic, black-and-white or multispectral 
scenes, producing coloured images from combination 
of different wavelengths (Deilami & Hashim, 2011). 
The Sentinel-2 program consists of 2 multispectral 
satellites operating at the time. Their orbits are 
synchronized with the movement of the Sun relative to 
Earth, thereby achieving repeated satellite overflights 
relative to specific points on Earth at the same time of 
the day. Such an orbit is essential for reading long-term 
and constant measurements. The images of different 
spectral channels are available within a resolution of 
10, 20 and 60 meters. The visible lights and close-
range infrared scenes are available at a resolution of 
10 meters (Drusch et al., 2012).

The aim of this study is to evaluate different 
indicators from LiDAR point clouds and Sentinel-2 

multispectral images using GIS algorithms to process 
raw data and obtain comparable values to the field 
data.

Materials and Methods
The study was conducted at six sites in the central 

part of Latvia, where LiDAR data was available in the 
year 2018. Study sites were selected according to the 
survey of the owners where some of the area, seasonally 
or long-term, is difficult for the land management due 
to wet conditions or water accumulation. For field 
work, the boundaries of the study sites were marked by 
the natural and rural block boundaries, where each site 
includes both an area with optimal water regime for 
agriculture and wet area where the land management 
is difficult. For each optimal and wet area 3 random 
points were generated, making in total 39 sampling 
plots (Table 1).

Field Measurements were collected in November 
2018. Each sample point was probed with a soil probe 
(with a maximum depth of 115 cm and the following 
indicators were identified: an occurrence and depth 
of reductimorphic colours, depth of groundwater 
(if reached) and granulometric composition for 
comparison with old (USSR) soil maps. In addition, 
soil moisture was measured with Eijelkamp 
Penetrologger ThetaProbe over a two-day period, 
under similar weather conditions (cloudy days without 
rain), so that no rapid changes in soil moisture could 
happen and data would be comparable (Vereecken et 
al., 2008). Later on, soil sub-type after Taxonomy of 
Latvia soils was determined (Kārkliņš et al., 2009) 
and various indices from cartographic materials were 
defined: soil granulometric composition and sub-type 
from old soil maps (40 years and older); quaternary 
sediments and density of an amelioration network. 

LiDAR point cloud data for this study is acquired 
from Latvian Geospatial Information Agency with 
a minimum point density at least 1.5 points per m2, 

Table 1
Characteristics of study sites

Name Coordinates Area (ha) Sample plots Description of wet conditions
Skriveri1 56.691385, 

25.137438
17.6 9 In terrain depressions water accumulates seasonally, in two 

separate wet areas land is not managed
Skriveri2 56.694682, 

25.144385
7.2 6 In terrain depression water accumulates on a long-term 

basis, land management is difficult (ploughing)
Skriveri3 56.696242, 

25.129931
20.2 6 In terrain depression water accumulates on a long-term 

basis, land management is difficult (ploughing)
Pure1 57.041472, 

22.913811
6.7 6 In terrain depression water accumulates seasonally, in wet 

area land is not managed
Pure2 57.043572, 

22.882180
5.8 6 In the river valley water accumulates seasonally, land 

management is difficult (mowing)
Stende 57.210798, 

22.559618
2.1 6 In whole area water accumulates on a long-term basis, land 

is not managed, partially created drainage system
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average horizontal point error is 0.36 meters and 
vertical accuracy 0.12 meters. Each point cloud data 
covers 1 km2 wide area and is already pre-classified. 
For each study site digital elevation models (DEM) 
were created from 4 to 12 raw data cells (1-2 central 
cell containing study area and buffer zone) for precise 
hydrological runoff modelling. Digital elevation model 
was created in GRASS GIS 7.4.2 application where 
point clouds in .las format were imported (using only 
ground surface class from point cloud data), empty 
cells filled with r.fillnulls tool (using bicubic method), 
point clouds were merged with r.patch tool and DEM 
was exported in 2, 5, 10 and 25 meter resolutions in 
GTiff format for further processing in QGIS 3.4.3. 
In addition, DEM with a resolution of 2 meters was 
processed in WhiteboxGIS 3.4 where with a tool Burn 
Streams at Roads ditches were smoothened for regular 
stream network (simulating culverts under the roads). 
In QGIS, a digital elevation model in all resolutions 
was processed with several SAGA GIS tools. Using 
a Relative heights and slope tool a normalized height 
model was made, which shows differences in local 
topography (Böhner & Selige, 2006) more clearly. 
Terrain depressions were filled with a Fill sinks tool 
(a raster map of depression depth was generated by 
extracting original DEM from filled), the depression 
map shows areas in the terrain where water could 
accumulate (Wang & Liu, 2006). Using a Slope, Aspect, 
Curvature tool steepness of the slope was calculated. 
As a slope of the surface increases, the risk of water 
accumulation decreases, but water accumulation 
increases at the bottom of the slope, especially if a 
negative relief is formed on which the water flows 
from the surrounding area (Beven & Germann, 1982). 
The catchment area (with Catchment area tool) shows 
the size of the area from which each cell receives 
surface water runoff, which allows to distinguish 
smooth water flows in the terrain model from the 
highest to the lowest point (O’Callaghan & Mark, 
1984). Using SAGA Wetness Index and Topographic 
Wetness Index (TWI) tools two wetness indexes were 
modelled. As the end result of both models are indexes 
without set values, a Raster normalization tool (in a 
scale 1 to 10) was used for comparison both models 
and study areas. TWI in different studies have shown 
good results to determine moisture conditions in 
different areas, but it is not suited for flat areas and 
resolutions of digital elevation model higher than 25 
meters (Case et al., 2005; Sørensen & Seibert, 2007). 
Topographic wetness index simulates the water flow as 
a thin layer moving from cell to cell, whereas SAGA 
index algorithms focus on the vertical cell distances 
relative to adjacent water objects and streams (Böhner 
et al., 2001).

Sentinel-2 multispectral imagery data for this 
study is acquired from European Space Agency using 

all available bands at best spatial resolution of 10 
meters: (B2) visible blue spectral band, (B3) visible 
green spectral band, (B4) visible red spectral band and 
(B8) near infrared spectral band (Immitzer, Vuolo, & 
Atzberger, 2016). Although imagery from Sentinel-2 
is available regularly, most of the scenes are covered 
with clouds, especially in spring and autumn seasons. 
Normalized Difference Vegetation Index (NDVI) is 
calculated from near infrared spectral band (NIR) 
and visible red spectral band (VIS) mathematically in 
Formula 1 (Pettorelli et al., 2005):
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𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑉𝑉𝑉𝑉)
(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑉𝑉𝑉𝑉) (1)

To combine processed layers in GIS with field data, a Point sampling tool in QGIS was used for statistics of 
sample points. In total, 52 indices were generated (32 from LiDAR point clouds and 20 from Sentinel-2 multispectral 
imagery). The soil moisture measurements (%) were selected as the best parameter from field work for data 
comparison. Pearson’s correlation coefficient was calculated for each data pair, then the indices with best results were 
used in a linear regression model for determination of statistical significance in the program R. In addition, all 
quantitative data was analysed by principal component analysis (PCA) in PC-Ord 5.0.

Results and Discussion
Among the surveyed 39 sample plots, only in 8 plots soil sub-types today coincide with the USSR soil maps. 

Results suggest that old soil maps nowadays serve as an approximate informative material. Soil sub-type and 
granulometric composition are influenced by time (soil processes), scale of map and methodology. The main 
differences between USSR soil maps and the results from field works are the higher proportion of podzolification 
process and lower soil moisture conditions. 

After selecting indices with higher correlation coefficients and statistical significance in a linear regression 
model (p<0.05) only two of the GIS based parameters show connection between measurements of soil moisture: a 
normalized height model in resolution of 25 meters (r2=0.45) and visible blue spectral band in April (r2=0.39), yet the 
correlation between data is not high. Normalized height in resolution of 25 meters shows that this is suitable scale to 

(1)

To combine processed layers in GIS with field 
data, a Point sampling tool in QGIS was used for 
statistics of sample points. In total, 52 indices were 
generated (32 from LiDAR point clouds and 20 
from Sentinel-2 multispectral imagery). The soil 
moisture measurements (%) were selected as the 
best parameter from field work for data comparison. 
Pearson’s correlation coefficient was calculated for 
each data pair, then the indices with best results were 
used in a linear regression model for determination of 
statistical significance in the program R. In addition, 
all quantitative data was analysed by principal 
component analysis (PCA) in PC-Ord 5.0.

Results and Discussion
Among the surveyed 39 sample plots, only in 8 

plots soil sub-types today coincide with the USSR soil 
maps. Results suggest that old soil maps nowadays 
serve as an approximate informative material. Soil sub-
type and granulometric composition are influenced by 
time (soil processes), scale of map and methodology. 
The main differences between USSR soil maps and 
the results from field works are the higher proportion 
of podzolification process and lower soil moisture 
conditions. 

After selecting indices with higher correlation 
coefficients and statistical significance in a linear 
regression model (p<0.05) only two of the GIS based 
parameters show connection between measurements of 
soil moisture: a normalized height model in resolution 
of 25 meters (r2=0.45) and visible blue spectral band 
in April (r2=0.39), yet the correlation between data is 
not high. Normalized height in resolution of 25 meters 
shows that this is suitable scale to analyse study sites at 
corresponding areas. The noise of high-resolution data 
does not interfere, yet local elevations and depressions 
are still visible and show the best correlation with 
surveyed wet areas on fields.

Different studies show that from indicators like a 
slope, SAGA wetness index and NDVI it is possible to 
get high-quality results for identification soil moisture 
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in forestry (Ivanovs & Lupikis, 2018) and agriculture 
(McCoy, Asner, & Graves, 2011), but the methodology 
of sampling points and field measurements should be 
corrected. At this moment, the results are significantly 
affected by each study site and their local conditions. 
In other studies, Compound Topographic Index (CTI) 
(Higginbottom et al., 2018), Soil Wetness Index 
(SWI) (Murphy, Ogilvie, & Arp, 2009) from LiDAR 
data, and Empirical Standardized Soil Moisture Index 
(ESSMI) (Carrão et al., 2016) from multispectral 
satellite imagery that could be used for developing 
current research show good results at high-resolution 
soil wetness mapping.

Results from principal component analysis show 
similarities with linear regression models. First of 
all, there is a close negative relationship between 
soil moisture and normalized height models (higher 
in 25 m and lower in 10 m resolutions) meaning that 
lowest areas in a local terrain also can show wet areas. 
Results show that the raw data in summer months 
is not appropriate for soil moisture identification as 
different crops show different values. Data should be 
analysed (classified) by the type of crops and usually 
there is not visible water accumulation on the fields, 

whereas the best correlation is in scenes from April 
and October before and after active vegetation period. 
Results show the time frame on which imagery data 
it would be necessary to focus on to develop this 
research (Figure 1).

Results of this study suggest that there is much to 
implement for future development of this research. 
First of all, implementing more study sites and 
more sample plots in each study site is necessary for 
objective data analysis; secondly, focusing on the 
percentage of soil moisture as the main indicator of wet 
areas, using more measurements in every sample plot 
and calculating average; thirdly, expanding research 
and calculating specific moisture indexes, which 
have shown good results in other studies: Compound 
Topographic Index (CTI), Soil Wetness Index (SWI) 
and Empirical Standardized Soil Moisture Index 
(ESSMI).

Conclusions 
To use old soil maps, developed more than 40 

years ago, in order to get an overview about soil 
wetness conditions is inappropriate. Soil sub-types 
over the time have changed, mainly reduced humidity 

Figure 1. Quantitative measurements from GIS models and field work  
in principal component analysis.
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conditions have been observed. As technologies like 
LiDAR and satellite imagery are rapidly developing, 
different studies show that it is possible to define wet 
areas with high accuracy.

The results from this study are not as high as 
expected and other studies have shown, but two of 

calculated indices show statistically significant results 
and with better study site and sample plot design it 
should be possible to obtain better results for usage in 
wet soil prediction models.
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